University of Pennsylvania
Abstract:Given a Markov decision process (MDP), we seek to learn representations for a range of policies to facilitate behavior steering at test time. As policies of an MDP are uniquely determined by their occupancy measures, we propose modeling policy representations as expectations of state-action feature maps with respect to occupancy measures. We show that these representations can be approximated uniformly for a range of policies using a set-based architecture. Our model encodes a set of state-action samples into a latent embedding, from which we decode both the policy and its value functions corresponding to multiple rewards. We use variational generative approach to induce a smooth latent space, and further shape it with contrastive learning so that latent distances align with differences in value functions. This geometry permits gradient-based optimization directly in the latent space. Leveraging this capability, we solve a novel behavior synthesis task, where policies are steered to satisfy previously unseen value function constraints without additional training.
Abstract:We introduce a constrained optimization framework for training transformers that behave like optimization descent algorithms. Specifically, we enforce layerwise descent constraints on the objective function and replace standard empirical risk minimization (ERM) with a primal-dual training scheme. This approach yields models whose intermediate representations decrease the loss monotonically in expectation across layers. We apply our method to both unrolled transformer architectures and conventional pretrained transformers on tasks of video denoising and text classification. Across these settings, we observe constrained transformers achieve stronger robustness to perturbations and maintain higher out-of-distribution generalization, while preserving in-distribution performance.
Abstract:In this paper, we develop unrolled neural networks to solve constrained optimization problems, offering accelerated, learnable counterparts to dual ascent (DA) algorithms. Our framework, termed constrained dual unrolling (CDU), comprises two coupled neural networks that jointly approximate the saddle point of the Lagrangian. The primal network emulates an iterative optimizer that finds a stationary point of the Lagrangian for a given dual multiplier, sampled from an unknown distribution. The dual network generates trajectories towards the optimal multipliers across its layers while querying the primal network at each layer. Departing from standard unrolling, we induce DA dynamics by imposing primal-descent and dual-ascent constraints through constrained learning. We formulate training the two networks as a nested optimization problem and propose an alternating procedure that updates the primal and dual networks in turn, mitigating uncertainty in the multiplier distribution required for primal network training. We numerically evaluate the framework on mixed-integer quadratic programs (MIQPs) and power allocation in wireless networks. In both cases, our approach yields near-optimal near-feasible solutions and exhibits strong out-of-distribution (OOD) generalization.
Abstract:A learning task, understood as the problem of fitting a parametric model from supervised data, fundamentally requires the dataset to be large enough to be representative of the underlying distribution of the source. When data is limited, the learned models fail generalize to cases not seen during training. This paper introduces a multi-task \emph{cross-learning} framework to overcome data scarcity by jointly estimating \emph{deterministic} parameters across multiple, related tasks. We formulate this joint estimation as a constrained optimization problem, where the constraints dictate the resulting similarity between the parameters of the different models, allowing the estimated parameters to differ across tasks while still combining information from multiple data sources. This framework enables knowledge transfer from tasks with abundant data to those with scarce data, leading to more accurate and reliable parameter estimates, providing a solution for scenarios where parameter inference from limited data is critical. We provide theoretical guarantees in a controlled framework with Gaussian data, and show the efficiency of our cross-learning method in applications with real data including image classification and propagation of infectious diseases.
Abstract:Neurodegeneration, characterized by the progressive loss of neuronal structure or function, is commonly assessed in clinical practice through reductions in cortical thickness or brain volume, as visualized by structural MRI. While informative, these conventional approaches lack the statistical sophistication required to fully capture the spatially correlated and heterogeneous nature of neurodegeneration, which manifests both in healthy aging and in neurological disorders. To address these limitations, brain age gap has emerged as a promising data-driven biomarker of brain health. The brain age gap prediction (BAGP) models estimate the difference between a person's predicted brain age from neuroimaging data and their chronological age. The resulting brain age gap serves as a compact biomarker of brain health, with recent studies demonstrating its predictive utility for disease progression and severity. However, practical adoption of BAGP models is hindered by their methodological obscurities and limited generalizability across diverse clinical populations. This tutorial article provides an overview of BAGP and introduces a principled framework for this application based on recent advancements in graph signal processing (GSP). In particular, we focus on graph neural networks (GNNs) and introduce the coVariance neural network (VNN), which leverages the anatomical covariance matrices derived from structural MRI. VNNs offer strong theoretical grounding and operational interpretability, enabling robust estimation of brain age gap predictions. By integrating perspectives from GSP, machine learning, and network neuroscience, this work clarifies the path forward for reliable and interpretable BAGP models and outlines future research directions in personalized medicine.
Abstract:Diffusion models have become prevalent in generative modeling due to their ability to sample from complex distributions. To improve the quality of generated samples and their compliance with user requirements, two commonly used methods are: (i) Alignment, which involves fine-tuning a diffusion model to align it with a reward; and (ii) Composition, which combines several pre-trained diffusion models, each emphasizing a desirable attribute in the generated outputs. However, trade-offs often arise when optimizing for multiple rewards or combining multiple models, as they can often represent competing properties. Existing methods cannot guarantee that the resulting model faithfully generates samples with all the desired properties. To address this gap, we propose a constrained optimization framework that unifies alignment and composition of diffusion models by enforcing that the aligned model satisfies reward constraints and/or remains close to (potentially multiple) pre-trained models. We provide a theoretical characterization of the solutions to the constrained alignment and composition problems and develop a Lagrangian-based primal-dual training algorithm to approximate these solutions. Empirically, we demonstrate the effectiveness and merits of our proposed approach in image generation, applying it to alignment and composition, and show that our aligned or composed model satisfies constraints effectively, and improves on the equally-weighted approach. Our implementation can be found at https://github.com/shervinkhalafi/constrained_comp_align.
Abstract:Despite the ubiquity of vector search applications, prevailing search algorithms overlook the metric structure of vector embeddings, treating it as a constraint rather than exploiting its underlying properties. In this paper, we demonstrate that in $q$-metric spaces, metric trees can leverage a stronger version of the triangle inequality to reduce comparisons for exact search. Notably, as $q$ approaches infinity, the search complexity becomes logarithmic. Therefore, we propose a novel projection method that embeds vector datasets with arbitrary dissimilarity measures into $q$-metric spaces while preserving the nearest neighbor. We propose to learn an approximation of this projection to efficiently transform query points to a space where euclidean distances satisfy the desired properties. Our experimental results with text and image vector embeddings show that learning $q$-metric approximations enables classic metric tree algorithms -- which typically underperform with high-dimensional data -- to achieve competitive performance against state-of-the-art search methods.
Abstract:We study the problem of computing an optimal large language model (LLM) policy for a constrained alignment problem, where the goal is to maximize a primary reward objective while satisfying constraints on secondary utilities. Despite the popularity of Lagrangian-based LLM policy search in constrained alignment, iterative primal-dual methods often fail to converge, and non-iterative dual-based methods do not achieve optimality in the LLM parameter space. To address these challenges, we employ Lagrangian duality to develop an iterative dual-based alignment method that alternates between updating the LLM policy via Lagrangian maximization and updating the dual variable via dual descent. In theory, we characterize the primal-dual gap between the primal value in the distribution space and the dual value in the LLM parameter space. We further quantify the optimality gap of the learned LLM policies at near-optimal dual variables with respect to both the objective and the constraint functions. These results prove that dual-based alignment methods can find an optimal constrained LLM policy, up to an LLM parametrization gap. We demonstrate the effectiveness and merits of our approach through extensive experiments conducted on the PKU-SafeRLHF dataset.
Abstract:When addressing complex questions that require new information, people often associate the question with existing knowledge to derive a sensible answer. For instance, when evaluating whether melatonin aids insomnia, one might associate "hormones helping mental disorders" with "melatonin being a hormone and insomnia a mental disorder" to complete the reasoning. Large Language Models (LLMs) also require such associative thinking, particularly in resolving scientific inquiries when retrieved knowledge is insufficient and does not directly answer the question. Graph Inspired Veracity Extrapolation (GIVE) addresses this by using a knowledge graph (KG) to extrapolate structured knowledge. However, it involves the construction and pruning of many hypothetical triplets, which limits efficiency and generalizability. We propose Self-GIVE, a retrieve-RL framework that enhances LLMs with automatic associative thinking through reinforcement learning. Self-GIVE extracts structured information and entity sets to assist the model in linking to the queried concepts. We address GIVE's key limitations: (1) extensive LLM calls and token overhead for knowledge extrapolation, (2) difficulty in deploying on smaller LLMs (3B or 7B) due to complex instructions, and (3) inaccurate knowledge from LLM pruning. Specifically, after fine-tuning using self-GIVE with a 135 node UMLS KG, it improves the performance of the Qwen2.5 3B and 7B models by up to $\textbf{28.5%$\rightarrow$71.4%}$ and $\textbf{78.6$\rightarrow$90.5%}$ in samples $\textbf{unseen}$ in challenging biomedical QA tasks. In particular, Self-GIVE allows the 7B model to match or outperform GPT3.5 turbo with GIVE, while cutting token usage by over 90\%. Self-GIVE enhances the scalable integration of structured retrieval and reasoning with associative thinking.
Abstract:We consider the problem of optimal link scheduling in large-scale wireless ad hoc networks. We specifically aim for the maximum long-term average performance, subject to a minimum transmission requirement for each link to ensure fairness. With a graph structure utilized to represent the conflicts of links, we formulate a constrained optimization problem to learn the scheduling policy, which is parameterized with a graph neural network (GNN). To address the challenge of long-term performance, we use the state-augmentation technique. In particular, by augmenting the Lagrangian dual variables as dynamic inputs to the scheduling policy, the GNN can be trained to gradually adapt the scheduling decisions to achieve the minimum transmission requirements. We verify the efficacy of our proposed policy through numerical simulations and compare its performance with several baselines in various network settings.